7 research outputs found

    Editorial. The crux in bridge and transport network resilience - advancements and future-proof solutions

    Get PDF
    Bridges and critical transport infrastructure (CTI) are primary infrastructure assets and systems that underpin human mobility and activities. Loss of the functionality of bridges has consequences on the entire transport network, which is also interconnected with other networks, therefore cascading events are expected in the entire system of systems, leading to significant economic losses, business, and societal disruption. Recent natural disasters revealed the vulnerabilities of bridges and CTI to diverse hazards (e.g. floods, blasts, earthquakes), some of which are exacerbated due to climate change. Therefore, the assessment of bridge and network vulnerabilities by quantifying their capacity and functionality loss and adaptation to new requirements and stressors is of paramount importance. In this paper, we try to understand what are the main compound hazards, stressors and threats that influence bridges with short- and long-term impacts on their structural capacity and functionality and the impact of bridge closures on the network operability. We also prioritise the main drivers of bridge restoration and reinstatement, e.g. its importance, structural, resources, organisational factors. The loss of performance, driven by the redundancy and robustness of the bridge, is the first step to be considered in the overall process of resilience quantification. Resourcefulness is the other main component of resilience here analysed

    Invited perspectives : challenges and future directions in improving bridge flood resilience

    Get PDF
    Bridges are critical infrastructure components of road and rail transport networks. A large number of these critical assets cross or are adjacent to waterways and floodplains and are therefore exposed to flood actions such as scour, hydrodynamic loading and inundation, all of which are exacerbated by debris accumulations. These stressors are widely recognised as responsible for the vast majority of bridge failures around the world. While efforts have been made to increase the robustness of bridges to the flood hazard, many scientific and technical gaps remain. These gaps were explored during an expert workshop that took place in April 2021 with the participation of academics, consultants and decision makers operating in the United Kingdom and specialised in the fields of bridge risk assessment and management and floods. In particular, the following issues, established at different levels and scales of bridge flood resilience, were analysed: (i) characterization of the effects of floods on different bridge typologies, (ii) inaccuracy of formulae for scour depth assessment, (iii) evaluation of consequences of damage, (iv) recovery process after flood damage, (v) decision-making under uncertainty, and (vi) use of event forecasting and monitoring data for increasing the reliability of bridge flood risk estimations. These issues are discussed in this paper to inform other researchers and stakeholders worldwide, guide the directions of future research in the field, and influence policies for risk mitigation and rapid response to flood warnings, ultimately increasing bridge resilience

    Flood damage inspection and risk indexing data for an inventory of bridges in Central Greece

    No full text
    This dataset is related to the research paper entitled “Bridge-specific flood risk assessment of transport networks using GIS and remotely sensed data” published in the Science of the Total Environment. It provides the information necessary for the reproduction of the case study that was used for the demonstration and validation of the proposed risk assessment framework. The latter integrates indicators for the assessment of hydraulic hazards and bridge vulnerability with a simple and operationally flexible protocol for the interpretation of bridge damage consequences on the serviceability of the transport network and on the affected socio-economic environment. The dataset encompasses (i) inventory data for the 117 bridges of the Karditsa Prefecture, in Central Greece, which were affected by a historic flood that followed the Mediterranean Hurricane (Medicane) Ianos, in September 2020; (ii) results of the risk assessment analysis, including the geospatial distribution of hazard, vulnerability, bridge damage, and associated consequences for the area's transport network; (iii) an extensive damage inspection record, compiled shortly after the Medicane, involving a sample of 16 (out of the 117) bridges of varying characteristics and damage levels, ranging from minimal damage to complete failure, which was used as a reference for validation of the proposed framework. The dataset is complemented by photos of the inspected bridges which facilitate the understanding of the observed bridge damage patterns. This information is intended to provide insights into the response of riverine bridges to severe floods and a thorough base for comparison and validation of flood hazard and risk mapping tools, potentially useful for engineers, asset managers, network operators and stakeholders involved in decision-making for climate adaptation of the road sector

    Field tests and numerical analysis of the effects of scour on a full-scale soil-foundation-structural system

    Get PDF
    Scour is the prevailing cause of bridge failure worldwide, leading not only to traffic disruption, but also to social and economic losses and even to casualties. Many vibration-based monitoring techniques have been proposed for identifying the scour location and extent, based on the evaluation of the changes of the bridge modal properties due to scour. This study describes the experimental and numerical research carried out to investigate the effects of scour on the dynamic properties of structures with shallow foundations. Although these are the most vulnerable ones, they have received less attention compared to structures founded on pile foundations. In order to fill some existing knowledge gaps, field experiments were carried out on EuroProteas, a structural prototype with shallow foundation that was subjected to increasing levels of scour. The changes of the dynamic properties of the system are evaluated by postprocessing the ambient vibration recordings and by developing various models of the soil-foundation-structural system with different descriptions of the soil-structure interaction problem. The study results shed light on the effects of scour on systems with shallow foundations and on the accuracy of alternative modelling approaches. They are presented here to inform the development and validation of vibration-based techniques and modelling strategies for bridge scour identification

    Invited perspectives: Challenges and future directions in improving bridge flood resilience

    Get PDF
    Abstract. Bridges are critical-infrastructure components of road and rail transport networks. A large number of these critical assets cross or are adjacent to waterways and floodplains and are therefore exposed to flood actions such as scour, hydrodynamic loading, and inundation, all of which are exacerbated by debris accumulations. These stressors are widely recognized as responsible for the vast majority of bridge failures around the world, and they are expected to be exacerbated due to climate change. While efforts have been made to increase the robustness of bridges to the flood hazard, many scientific and technical gaps remain. These gaps were explored during an expert workshop that took place in April 2021 with the participation of academics, consultants, and decision makers operating mainly in the United Kingdom and specializing in the fields of bridge risk assessment and management and flood resilience. The objective of the workshop was to identify and prioritize the most urgent and significant impediments to bridge flood resilience. In particular, the following issues, established at different levels and scales of bridge flood resilience, were identified and analysed in depth: (i) characterization of the effects of floods on different bridge typologies, (ii) uncertainties in formulae for scour depth assessment, (iii) evaluation of consequences of damage, (iv) recovery process after flood damage, (v) decision-making under uncertainty for flood-critical bridges, and (vi) use of event forecasting and monitoring data for increasing the reliability of bridge flood risk estimations. These issues are discussed in this paper to inform other researchers and stakeholders worldwide, guide the directions of future research in the field, and influence policies for risk mitigation and rapid response to flood warnings, ultimately increasing bridge resilience. </jats:p

    SDG Final Decade of Action: Resilient Pathways to Build Back Better from High-Impact Low-Probability (HILP) Events

    No full text
    The 2030 Sustainable Development Goals (SDGs) offer a blueprint for global peace and prosperity, while conserving natural ecosystems and resources for the planet. However, factors such as climate-induced weather extremes and other High-Impact Low-Probability (HILP) events on their own can devastate lives and livelihoods. When a pandemic affects us, as COVID-19 has, any concurrent hazards interacting with it highlight additional challenges to disaster and emergency management worldwide. Such amplified effects contribute to greater societal and environmental risks, with cross-cutting impacts and exposing inequities. Hence, understanding how a pandemic affects the management of concurrent hazards and HILP is vital in disaster risk reduction practice. This study reviews the contemporary literature and utilizes data from the Emergency Events Database (EM-DAT) to unpack how multiple extreme events have interacted with the coronavirus pandemic and affected the progress in achieving the SDGs. This study is especially urgent, given the multidimensional societal impacts of the COVID-19 pandemic amidst climate change. Results indicate that mainstreaming risk management into development planning can mitigate the adverse effects of disasters. Successes in addressing compound risks have helped us understand the value of new technologies, such as the use of drones and robots to limit human exposure. Enhancing data collection efforts to enable inclusive sentinel systems can improve surveillance and effective response to future risk challenges. Stay-at-home policies put in place during the pandemic for virus containment have highlighted the need to holistically consider the built environment and socio-economic exigencies when addressing the pandemic&rsquo;s physical and mental health impacts, and could also aid in the context of increasing climate-induced extreme events. As we have seen, such policies, services, and technologies, along with good nutrition, can significantly help safeguard health and well-being in pandemic times, especially when simultaneously faced with ubiquitous climate-induced extreme events. In the final decade of SDG actions, these measures may help in efforts to &ldquo;Leave No One Behind&rdquo;, enhance human&ndash;environment relations, and propel society to embrace sustainable policies and lifestyles that facilitate building back better in a post-pandemic world. Concerted actions that directly target the compounding effects of different interacting hazards should be a critical priority of the Sendai Framework by 2030
    corecore